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A new equation of state (EOS) is proposed for the Helmholtz energy F of the 
Lennard-Jones fluid which represents the thermodynamic properties over a 
wide range of temperatures and densities. The EOS is written in the form of a 
generalized van der Waals equation, F = FH + F^, where FH is a hard body con- 
tribution and F^ an attractive dispersion force contribution. The expression for 
F H is closely related to the hybrid Barker-Henderson pertubation theory. The 
construction of F^ is accomplished with the Setzmann-Wagner optimization 
procedure on the basis of virial coefficients and critically assessed computer 
simulation data. A comparison with the EOS of Johnson et al. shows improve- 
ment in the description of the vapor-liquid coexistence properties, the pvT data, 
and in peculiar, of the caloric properties. A comparison with the EOS of Kolafa 
and Nezbeda which appeared after the bulk of this work was finished shows still 
an improvement in the standard deviations of the pressure and internal energy 
by about 30%. 

KEY WORDS: coexistence curve; equation of state; Lennard-Joues fluid; 
thermodynamic properties. 

1. I N T R O D U C T I O N  

The Lennard-Jones (L J) fluid is the most widely used model of a simple 
realistic fluid and, hence, several equations of state (EOS) have been pub- 
lished recently [ 1-5 ] to describe its thermodynamic behavior. According to 
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different aims of the authors, different types of equations have been used. 
Johnson et al. [ 1 ] wanted to have a very accurate equation and used a 
modified Benedict-Webb-Rubin equation. Sowers and Sandier [2], on the 
other hand, wanted to cast their equation into a form inspired by perturba- 
tion theory. Our aim is to lind an equation for the Helmholtz energy F in 
the form of a generalized van der Waals equation, F =  F H + FA, where F ,  
accounts for the hard body interaction and F A for the attractive dispersion 
forces. One reason for equations of this form is that they allow a highly 
accurate description of real fluids with only a few substance-specific 
parameters [6].  For mixtures, we believe in agreement with Sowers and 
Sandler [7] that special mixing rules are required for F n and F A and, 
finally, also for the polar contributions to F [8]. To achieve a satisfying 
mixing rule for F A one needs a rather accurate equation for this term. 
Hence, the aim of this paper is to construct an equation of state for the 
Lennard-Jones fluid in the form F =  FH + FA, which should be at least as 
accurate as that of Johnson et al. [ 1 ]. 

The equation is based on simulation data and virial coefficients to be 
discussed in more detail in the next Section. An optimized equation for FA 
is found by the method of Setzmann and Wagner [9]. 

After the bulk of this work was completed, the very recent equation of 
Kolafa and Nezbeda [ 10] came to our attention. Hence, we include also 
comparisons with this equation. 

2. FUNCTIONAL F O R M  OF THE EQUATION 

Let us consider a Lennard-Johnson fluid with the parameters e and a 
and denote all quantities in reduced units. In peculiar, we use the reduced 
temperature T* =kT/e, the reduced density p * =  pa 3, the reduced pressure 
p =pa3/e and the reduced residual internal energy u * =  U/Ne. 

We are looking for an expression of the residual Helmholtz energy F 
as function of the density p and the temperature T, F= F(p, T), in the form 

F = F  H + F  A (1) 

where Fn accounts for the hard-body interaction and FA for the attractive 
dispersion forces. 

For a system of hard spheres with a packing fraction ~ the residual 
Helmholtz energy FH is given according to Carnahan and Starling [ 11 ] as 

Fn/RT= (4~ -- 3~2)/(1 - ~)2 (2) 

For a Lennard-Jones fluid at a given temperature and density, the packing 
fraction is a quantity with slight arbitrariness. However, Saager et al. [ 12] 
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studied its temperature and density dependence using perturbation theories 
[13-15].  They arrived at the conclusion to describe the temperature 
dependence of the packing fraction ~ according to the hybrid Barker-  
Henderson [ 13 ] theory and yield the dependence on the density p and the 
temperature T by the correlation 

= O. 1617(p*/p*)[ 0.689 + 0.311( T*/T*)03674] - ,  (3) 

where p* and T* are the critical density and temperature, respectively, to 
be given in the next section. 

The crucial point is now the equation for FA. For  that purpose we make 
an ansatz of the form 

FA/RT= ~ ci( T*/T*)"" (p*/p*)"' exp[p,(p*/p*) q'] 
i 

(4) 

where the powers mg, n,., p;, and q~ as well as the coefficients cg shall be 
determined by the optimization procedure of Setzmann and Wagner [ 9]. 

3. DATA, CRITICAL-POINT CONSTRAINTS AND 
O P T I M I Z A T I O N  P R O C E D U R E  

The basic requirement for the construction of an equation of state is 
a reliable data set. For  the gas phase, virial coefficients up to the fifth are 
available [ 16], from which we use in this work the second and the third, 
B and C. With their help thermodynamic properties as pressure, internal 
energies, and heat capacities can be calculated up to densities p * ~  0.1. On 
the basis of this truncated virial expansion we have also a criterion to 
access the accuracy of existing simulation data in the low-density region. At 
higher densities, we checked the reliability of the simulation data from var- 
tious sources by the following method. First, we constructed auxiliary 
equations with all available simulation data which were weighted on the 
basis of the simulation uncertainties given by the authors. Data points 
which showed strong deviations from these equations were closer inspected 
and either reweighted or excluded. At this step careful attention was paid 
to the simulation methods, the particle numbers and the applied cutoff 
radius. In the course of the present work we created a new data set which 
is given in Table I and discussed below. 

The data sets which survived this critical data assessment procedure 
are listed in Table II. From the simulation data in these sets, again, 25% 
got a lower weighting or were excluded at all in the construction of the 
EOS. 
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Tablel. Molecular-Dynamics Results ~om This Work 

T* p* p* U* 

1.320 0.20 0.12670 (31 )  --1.55376(332) 
1.320 0.25 0.13135 ( 4 5 )  -I.89594(304) 
1.320 0.30 0.13217 ( 5 0 )  --2.20336(315) 
1.320 0.35 0.13104 (75 )  --2.50949(230) 
1.320 0.40 0.13367 ( 9 8 )  --2.80949(244) 
1.320 0.45 0.14453 ( 8 8 )  --3.09978(145) 

1.335 0.20 0.13215 ( 3 0 )  --1.52860(304) 
1.335 0.25 0.13728 ( 3 5 )  -1.88300(318) 
1.335 0.30 0.14028 ( 4 7 )  --2.20077(299) 
1.335 0.35 0.14180 ( 7 8 )  --2.50129(243) 
1.335 0.40 0.14333 ( 8 3 )  --2.78737(167) 
1.335 0.45 0.15813(118) -3.09078(169) 

In the construction of any EOS, the critical region and the critical 
point data are of some interest. In the peculiar form of our EOS, the criti- 
cal temperature T* and the critical density p* are required for the hard- 
body packing fraction defined in Eq. (3). Recently, a set of parameters was 
obtained by the NpT+test particle method as T* = 1.314 and p* =0.314 
[20]. These data, however, were obtained from correlations for the 
saturated vapor density p" and the saturated liquid densitiy p' forced into 
the functional form of p ' - p " ~ ( T c - T )  1/3. According to experimental 
evidence, this form holds for nearly infinite (N~ 10 23) real systems in the 
extended critical region. With a decreasing number N of independent par- 
ticles, however, the critical temperature is believed to increase. Several 
investigations on that item have been performed recently using the Gibbs 
ensemble [21-24]. As all the simulation data to which the EOS will be 
fitted here have been obtained for finite-size systems with up to N =  1372 
particles, we tried to estimate the critical point of a Lennard-Jones system 
with about N ~  1000 particles. The above-mentioned studies, however, 
were not very conclusive for that purpose. Hence, we performed simula- 
tions with N =  1372 particles at T* = 1.320 and T* = 1.335. The data given 
in Table I were obtained from molecular-dynamics simulations in a NVT 
ensemble, i.e., at prescribed particle number N, volume V, and temperature 
T, with 1372 particles using the momentum scaling method. The equations 
of motion were solved by a fifth-order predictor-corrector algorithm. Each 
production run went over 100,000 time steps with the length of a time step 
of 0.003 in the usual units. The cutoff radius was taken to be half of the box 
length. The estimation of the statistical uncertainties was made on the basis 
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Table II. Data Sets Used in the Construction 
Equation of State" 

of the 

Source Data 

Johnson et al. [ 1 ] p*,  u* 
Nicolas et al. [3]  p*,  u* 

Miyano [5]  p*, u* 
Saager et al. [17] p*, u* 
Kolafa et al. [18] p*, u* 

Kriebel [ 19] p*, u* 
This work t' p*,  u* 

Lotfi et al. [20] p*, u*, p*,  p'*, p"*, LIh~* 
Barker et al. [16] B*, C* 

From the simulation data in these sets, again 25 % got a 
lower weighting or were excluded at all in the construc- 
tion of the equation of state. 

h See Table I. 
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Fig. 1. Pressures from the simulations (Table I) on the 
isotherms T * =  1.320 and T * =  1.335 together with the 
values from the new EOS for the same two temperatures 
and the critical temperature T* = 1.328. 
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of block averages [25]. From the results in Table I and the graphical 
representation in Fig. 1, we learn that for that system size the critical point 
should be somewhere between these two temperatures. This finding is in 
agreement with a preliminary result of Valleau [26], who estimated 
T,* = 1.328 ) 0.003 for N =  500. In view of the fact that it seems difficult to 
arrive at a more accurate value and in view of the fact that the simulation 
data to be used in the EOS have been obtained from different particle num- 
bers N, we assumed the critical temperature to be T,* = 1.328 for the 
Lennard-Jones fluid of about N - 1000 particles. This value of T,* may still 
be subject to minor changes in future investigations. After having fixed T,*, 
the critical density was obtained by linear extrapolation of the diameter 
(p' + p")/2 from lower temperatures to T,* and resulted to be p: = 0.3107. 

As a result of the above discussion. the EOS was constrained to 

and 

with T,* = 1.328 and p,* = 0.3107. 
Having fixed the critical quantities, the residual Helmholz energy FH 

of the hard-body contribution is given via Eqs. (2) and (3). It remains 
now to find the contribution of the attractive dispersion forces in the form 
of Eq. (4). For that purpose we started from the data compiled in Table I1 
and subtracted the hard-body contributions. We were looking then for an 
ansatz for FA which minimizes simultanously the standard deviations of the 
pressures, the internal energies, the enthalpies of evaporation, the Maxwell 
data for phase equilibrium [20], and the second and third virial coef- 
ficients. While the virial coefficients are in principle exact, a small uncer- 
tainty had to be assigned to them for technical reasons due to the optimiza- 
tion procedure. 

An optimized ansatz for FA was found by the strategy of Setzmann 
and Wagner [ 9 ] .  In that procedure, a "bank of terms" is created by 
prescribed sets for the powers mi, n i ,  pi, and qi in Eq. (4). From this bank 
of terms the most effective elements are selected by a special search algo- 
rithm whch combines a stepwise regression analysis with elements of an 
evolutionary optimization method. Table I11 contains the powers and coef- 
ficients obtained by this procedure for the attractive contribution to the 
Helmholz energy FA in the form of Eq. (4). 
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Table III. Coefficients ca and Powers ma, ni, Pi, and qi 
for the Attractive Part of the Helmholtz Energy F,,,/RT 

in Eq.  (4)  

c m n p q 

0 . 3 3 6 1 9 7 6 0 7 2 0 E -  05 - 2.0 9 0 0 

- 0 . 1 4 7 0 7 2 2 0 5 9 1 E +  01 - 1 . 0  1 0 0 

- 0 . 1 1 9 7 2 1 2 1 0 4 3 E +  00 - I . 0  2 0 0 

- 0 . 1 1 3 5 0 3 6 3 5 3 9 E -  04  - 1 . 0  9 0 0 

-0.26778688896E- 04  - 0 . 5  8 0 0 

0 . 1 2 7 5 5 9 3 6 5 1 1 E -  05 - 0 . 5  I0  0 0 

0 . 4 0 0 8 8 6 1 5 4 7 7 E  - 02 0.5 I 0 0 

0 . 5 2 3 0 5 5 8 0 2 7 3 E -  05 0.5 7 0 0 

- 0 . 1 0 2 1 4 4 5 4 5 5 6 E -  07  1.0 10 0 0 

- 0 . 1 4 5 2 6 7 9 9 3 6 2 E -  01 - 5 . 0  1 - 1 1 

0 . 6 4 9 7 5 3 5 6 4 0 9 E  - 01 - 4 . 0  1 - 1 1 

- -  0 . 6 0 3 0 4 7 5 5 4 9 4 E -  01 - 2 . 0  1 - 1 1 

- 0 . 1 4 9 2 5 5 3 7 3 3 2 E  + 00 - 2 . 0  2 - I l 

- 0 . 3 1 6 6 4 3 5 5 8 6 8 E -  03 - 2 . 0  8 - 1  I 

0 . 2 8 3 1 2 7 8 1 9 3 5 E -  01 - 1 . 0  1 - -1  1 

0 . 1 3 0 3 9 6 0 3 8 4 5 E -  03 - 1.0 10 - 1 1 

0 . 1 0 1 2 1 4 3 5 3 8 1 E -  01 0.0 4 - I  1 

- 0 . 15425936014E-04  0.0 9 - 1  I 
- 0 . 6 1 5 6 8 0 0 7 2 7 9 E  - 01 - 5.0 2 - I 1 

0 . 7 6 0 0 1 9 9 4 4 2 3 E -  02 - 4.0 5 - 1 2 

- 0 . 1 8 9 0 6 0 4 0 7 0 8 E  + 00 - 3.0 I - 1 2 

0 . 3 3 1 4 1 3 1 1 8 4 6 E +  00 - 2 . 0  2 --1 2 

- 0 . 2 5 2 2 9 6 0 4 8 4 2 E  + 00 - 2.0 3 - 1 2 

0 . 1 3 1 4 5 4 0 1 8 1 2 E +  00 - 2 . 0  4 - 1  2 

- 0 . 4 8 6 7 2 3 5 0 9 1 7 E -  01 - 1.0 2 - 1 2 

0 . 1 4 7 5 6 0 4 3 8 6 3 E  - 02 - 10.0 3 - -  1 3 

- -  0 . 8 5 9 9 6 6 6 7 7 4 7 E - -  02 - -  6.0 4 - 1 3 

0 . 3 3 8 8 0 2 4 7 9 1 5 E - -  01 - 4 . 0  2 - l  3 

0 . 6 9 4 2 7 4 9 5 0 9 4 E - -  02 0.0 2 - -  1 3 

- - 0 . 2 2 2 7 1 5 3 1 0 4 5 E - -  07 - 2 4 . 0  5 - - l  4 

- 0 . 2 2 6 5 6 8 8 0 0 1 8 E -  03 - -  10.0 2 - 1 4 

0 . 2 4 0 5 6 0 1 3 7 7 9 E  - 02 - 2.0 10 - -  I 4 

4. DISCUSSION OF THE NEW EQUATION 

The new van der Waals-type EOS for the LJ fluid is given by Eqs. 
(1)-(4) with T~ -1.328,  p* =0.3107, and the powers and coefficients of 
FA/RT from Table III. It covers the whole fluid region up to the highest 
densities in the temperature range 0.7 ~< T* ~< 10.0 with high accuracy. For 
still higher temperatures we have ensured that the EOS follows a physically 
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correct behavior by using simulation data up to T* = 100.0 in the density 
region p* ~< 1.0. 

The quality of the equation shall be demonstrated by some com- 
parisons with the underlying simulation data for the pressure, the internal 
energy, and the phase equilibrium data as well as for the specific heat. In 
these comparisons we also include the modified Benedict-Webb-Rubin 
(MBWR) equation of Johnson et al. [ 1] and the pertubed-virial-expan- 
sion-hybrid-Barker-Henderson (PVE/hBH) equation of Kolafa and 
Nezbeda [ 101, which we believe to be the best presently published EOS., 

In the first step we perform a comparison for the pressures and inter- 
nal energies with the help of the standard deviations 

and 

( 1 ~  (Pi, Eos~Pi, s IM)2~ I/2 
STDpvr= n i=l Ap/.sIM- / (7) 

(1 ~ (Ui. Eos--Ui, sIM)2~ 1/2 
STDu= n AUj, stM2 j (8) 

i=1  

where n denotes the number of simulation data points, and Pi.EOS and 
Ui.Eos are the results from the EOS, while the simulation results are 
assigned as P;.S~M and Ua.s~M together with their statistical uncertainties 
Ap~.s~M and d Ut.siM. The results for the standard deviations of the new 
EOS are shown in Table IV, which also contains the standard deviations 
of the Johnson et al. [ 1 ] equation and of the Kolafa-Nezbeda [ 101 equa- 
tion. The standard deviations are shown for three data sets. "Our data set" 
includes all simulation data used for the contruction of the present EOS in 
the range of validity of the Johnson et al. [ 1 ] EOS, i.e., up to T * =  6.0. 
The other two data sets are those of Johnson et al. [ 1 ] including all 
molecular-dynamics and Monte Carlo results and of Kolafa et al. [181, 
with the uncertainties given in the original sources. As one can see from 
Table IV the new Lennard-Jones EOS gives the smallest weighted 
standard deviations for our own data set, for the data set of Johnson et al. 
[ 11 as well as for the data set of Kolafa et al. [ 18]. Independently from 
the used data set the improvement over the Johnson et al. [ 1 ] equation is 
significant especially in the representation of the internal energies. We also 
find an improvement over the Kolafa-Nezbeda [10] equation by about 
20-50%. 

The vapor pressures, the saturated liquid densities, and the saturated 
vapor densities obtained from the new EOS are tabulated in Tables V-VII. 
These contain also the phase equilibrium data from the MBWR equation 
[1], the PVE/hBH equation [10], and direct simulation results [201. 
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Table IV. Standard Deviations for the Pressure and the Internal Energy 
as Obtained from tile New EOS in Comparison to the MBWR Equation 
of Johnson et al. [1]  and to the PVE/hBH Equation of Kolafa and 
Nezbeda [ 10] (the Standard Deviations are Shown for Three Data Sets) 

New EOS MBWR PVE/hBH 

Our data set 
STD0vr 1.0139 1.9031 1.4965 
STDu 0.9777 8.2722 1.3578 

Data set of Johnson et al. [1]  
STDpvx 1.5406 2.4688 1.9058 
STDu 1.8040 7,9818 2.2393 

Data set of Kolafa et al. [18] 
STDpvx 2.2032 2.7382 2.8544 
STDu 4.2730 19.0787 5.0627 

-1 
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0.7 0.8 0.9 1 1.1 1.2 1.3 
T • 

Fig. 2. Deviation plot of the vapor pressures obtained from the new EOS ( ), 
from the MBWR equation of Johnson et al. [ l ]  ( - - - ) ,  from the PVE/hBH equa- 
tion of Kolafa and Nezbeda [ 10] ( . . . . .  ), and direct simulation data [20] (O)  in 
comparison with a correlation, Eq. [20] (.4p/p = ( P o - - P  . . . . . .  )/[7 . . . . . .  ). The error 
bars indicate the statistical uncertainties of the simulation results. 
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Table V. Vapor Pressures from the New EOS, from the MBWR 
Equation of Johnson et al. [ 1 ] and from the PVE/hBH Equation 
of Kolafa and Nezbeda E 10] in Comparison with the Simulation 

Data of Lotfi et al. 120] 

p.* 

T* New EOS MBWR PVE/hBH SIM 

0.70 0.00137 0.00138 0.00136 0.00131 (6) 
0.75 0.00263 0.00266 0.00262 0.00264 (7) 
0.80 0.00464 0.00469 0.00463 0.00470 (9) 
0.85 0.00762 0.00772 0.00761 0.00769(13) 
0.90 0.01182 0.01197 0.01181 0.01168(12) 
0.95 0.01749 0.01771 0.01748 0.01741(37) 
1.00 0.02488 0.02519 0.02487 0.02505(22) 
1.05 0.03426 0.03469 0.03425 0.03384(43) 
1.10 0.04589 0.04647 0.04586 0.04511(83) 
1.15 0.06003 0.06083 0.05995 0.05974(41) 
1.20 0.07694 0.07808 0.07678 0.07718(66) 
1.25 0.09684 0.09860 0.09662 0.0973 (11) 
1.30 0.12016 0.12290 0.11972 0.1204 (23) 

~ o  

I 
I 
I I 

f 

~s 

Fig. 3. Deviation plot of the saturated liquid densities obtained from the new EOS 
( ), from the MBWR equation of Johnson et al. [1] ( - - - ) ,  from the PVE/hBH 
equation of Kolafa and Nezbeda [10] ( . . . . .  ), and direct simulation data [20] 
(Q)  in comparison with a correlation, Eq. [20] (zlp'/p' =(P'-P'orr)/P'~orr). The 
error bars indicate the statistical uncertainties of the simulation results. 

-2 

0.7 0.8 0.9 1 1.! 1,2 1.3 
T* 
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Table VL Saturated Liquid Densities from the New EOS, from 
the MBWR Equation of Johnson et al. [1],  and from the PVE/ 
hBH Equation of Kolafa and Nezbeda [ 10] in Comparison with 

the Simulation Data of Lotfi et al. [20] 

T* New EOS MBWR PVE/hBH SIM 

0.70 0.84337 0.84324 0.84277 0.84266(18) 
0.75 0.82174 0.82169 0.82186 0.82158(38) 
0.80 0.79943 0.79887 0.80012 0.79929(39) 
0.85 0.77683 0.77551 0.77740 0.77623(25) 
0.90 0.75247 0.75166 0.75351 0.75221(13) 
0.95 0.72751 0.72703 0.72824 0.72798(27) 
1.00 0.70118 0.70117 0.70127 0.70081(38) 
1.05 0.67301 0.67345 0.67218 0.67292(46) 
1.10 0.64218 0.64300 0.64033 0.6401 (12) 
1.15 0.60730 0.60839 0.60475 0.60547(66) 
1.20 0.56577 0.56692 0.56375 0.5661 (22) 
1.25 0.51452 0.51182 0.51396 0.5125 (26) 
1.30 0.45136 0.41020 0.44593 0.428 (15) 

6 . .  

4 

~o ' " ...... " ! 

"tl :1 

:rt H I 
0.7 0.8 0.9 1 1.1 1.2 1.3 

T* 

Fig. 4. Deviation plot of the saturated vapor densities obtained from the new EOS 
( ), from the MBWR equation of Johnson et al. [1] ( - - - ) ,  from the PVE/hBH 
equation of Kolafa and Nezbeda [ 10] ( . . . . .  ), and direct simulation data [20] 
(O)  in comparison with a correlation, Eq. [20] (,dp"/p" =(p"--p~orr)/P'~orr). The 
error bars indicate the statistical uncertainties of the simulation results. 
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Deviation plots of these quantities from previous correlation equations 
[20] are shown in Figs. 2-4. We learn from Figs. 2 and 4 that the vapor 
pressures and the saturated vapor densities from both, the new EOS and 
the EOS of Kolafa and Nezbeda [ 10], are definitely in better agreement 
with the simulation data than the MBWR results. For the saturated liquid. 
density we learn from Fig. 3 that both new equations offer a slight 
improvement over MBWR. 

Finally, we compare in Table VIII residual isochoric specific heat 
capacities cv of the gas from several sources. One source is a truncated 
virial expansion including the fourth virial coefficient (B + C +  D) [ 16]. In 
addition, preliminary simulation results from canonical MD simulations 
using a Nos6-Hoover thermostat are shown, where Cv has been obtained 
from energy fluctuations [27]. We learn that for the considered state 
points which are slightly above or just on the dew line, the agreement 
between these two sources is good. We remind that for the construction of 
all equations, Cv-Values have not been used. We observe that the agreement 
of the EOS values with those from the truncated virial series and from the 
simulations becomes worse with increasing density. In this comparison the 
new EOS behaves slightly better than the PVE/hBH equation. 

Table VII. Saturated Vapor Densities from the New EOS, from 
the MBWR Equation of Johnson et al. [1],  and from the 
PVE/hBH Equation of Kolafa and Nezbeda [ 10] in Comparison 

with the Simulation Data of Lotfi et al. [20] 

T* New EOS MBWR PVE/hBH SIM 

0.70 0.00199 0.00201 0.00199 0.00193(10) 
0.75 0.00362 0.00366 0.00361 0.00363(10) 
0.80 0.00609 0.00616 0.00608 0.00617(12) 
0.85 0.00962 0.00974 0.00960 0.00970(22) 
0.90 0.01447 0.01466 0.01446 0.01426(16) 
0.95 0.02096 0.02122 0.02095 0.02081(51) 
1.00 0.02946 0.02981 0.02946 0.02964(32) 
1.05 0.04050 0.04096 0.04050 0.03974(65) 
1.10 0.05480 0.05543 0.05477 0.0533 (14) 
1.15 0.07345 0.07449 0.07335 0.07267(79) 
1.20 0.09832 0.10051 0.09805 0.0987 (16) 
1.25 0.13300 0.13941 0.13241 0.1339 (67) 
1.30 0.18910 0.21978 0.18610 0.195 (I1) 
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Table VIII. Residual Isochoric Heat Capacities of the Gas from a Trun- 
cated Virial Expansion ( B + C + D )  [16], from Canonical Molecular- 
Dynamics Simulations [27], from the New EOS, from the MBWR Equation 

[ 1 ], and from the PVE/hBH Equation [ 10] 

T* p* Virial SIM New EOS MBWR PVE/hBH 

1.15 0.0533 0.263 0.243 0.254 0.227 0.247 
1.10 0.0533 0.310 0.293 0.293 0.258 0.281 

1.25 0.0987 0.416 0.488 0.384 0.343 0.370 
1.20 0.0987 0.500 0.544 0.439 0.387 0.417 

1.35 0.195 0.685 0.684 0.543 0.511 0.514 
1.30 0.195 0.859 0.803 0.617 0.573 0.574 

Concluding,  we can state that  we have constructed an EOS for the 

L e n n a r d - J o n e s  fluid in the form of a generalized van der Waals equat ion  
which is definitely in better  agreement  with the existing s imulat ion data  
than  the M B W R  equat ion  of Johnson  et al. [1 ]  and shows still a slight 
improvement  over the PVE/hBH equat ion of Kolafa and Nezbeda [ 10]. 
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